
PROCEEDING

and the

21 – 22 September 2022

SGU Alam Sutera Campus, Prominence Tower Jalan Jalur Sutera Barat No. 15, Tangerang, Indonesia

The Association for Computing Machinery 1601 Broadway, 10th Floor New York, New York 10019, USA

ACM COPYRIGHT NOTICE. Copyright © 2022 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: ISBN 978-1-4503-9718-6

Conference Committee The 1st International Conference on Engineering and Information Technology for Sustainable Industry. (ICONETSI 2020)

Advisory Board

Prof. Dr. Eng. Koichi Murata, Nihon University, Japan Assoc. Prof. Dr. Waseem Haider, Central Michigan University, USA Prof. Dr. Wahyudi Sutopo, Universitas Sebelas Maret, Indonesia Dr. Selvakumar Ramachandran, Kerckhoffs Ltd, United Kingdom

Steering Committee

Dr. rer. nat. Filiana Santoso, Swiss German University, Indonesia Dr. Irvan S. Kartawiria, S.T., M. Sc, Swiss German University, Indonesia Anthon Stevanus Tondo, S.E., M.B.A., Swiss German University, Indonesia Dr. Kholis Audah, Swiss German University, Indonesia Dr. Maulahikmah Galinium, S.Kom., M.Sc., Swiss German University, Indonesia Dr. Nila Krisnawati Hidayat, SE., MM., Swiss German University, Indonesia Dr. Dipl. -Ing. Samuel P. Kusumocahyo, Swiss German University, Indonesia Dr.-Ing. Evita Legowo, Swiss German University, Indonesia

Conference Chair

Dr. Eng. Aditya T. Pratama, MT, Swiss German University, Indonesia

Program Chair

Assoc. Prof. Dr. Tanika D Sofianti, Swiss German University, Indonesia

Reviewer Committee

Dr. Christian Schunck, Fraunhofer-Institut fur Arbeitswirtschaft und Organisation IAO, Germany Assoc. Prof. Dr. Waseem Haider, Central Michigan University, USA Prof. Dr. Eng. Koichi Murata, Nihon University, Japan Assoc. Professor Yudi Fernando PhD M.LogM, Universitas Malaysia Pahang, Malaysia Dr. Andrea Callia D'iddio, Imperial College London, UK Dr. Muhammad Tahir Fattani, Sir Syed University of Engineering and Technology, Pakistan Dr. Masato Terada, Tokyo Denki University, Japan Dr. Eng. Andante Hadi Pandyaswargo, Waseda University, Japan Dr. Yuti Ariani, Asian School of the Environment, Singapore Dr. Cuk Supriyadi Ali Nandar*, BPPT, Indonesia Dr. Eng. Anto Satriyo Nugroho, BPPT, Indonesia Nuki Agya Utama, PhD, ASEAN Center for Energy Dr. Magfirawaty, Sekolah Tinggi Sandi Negara, Indonesia Dr. Edi Sofyan, B.Eng, LAPAN, Indonesia Dr. Mulya Mashudi, Kuul communities, Indonesia Dr. Yenny Meliana M.Si., Lembaga Ilmu Pengetahuan Indonesia, Indonesia

Arief Ameir Rahman Setiawan, M.Eng, Lembaga Ilmu Pengetahuan Indonesia, Indonesia Dra. Yanny Kussuryani, M.Si , Independent Consultant, Indonesia Dr. Made Andriani, Institut Teknologi Bandung, Indonesia Dr. Hasrini Sari, Institut Teknologi Bandung, Indonesia Dr. Hendy Risdianto Wijaya, Universitas Indonesia, Indonesia Dr. Eng. Imam Wahyudi Farid, Institut Teknologi Sepuluh Nopember, Indonesia Dr. Eko Liquiddanu, Universitas Sebelas Maret, Indonesia Dr. Muhammad Hisjam, Universitas Sebelas Maret, Indonesia Dr. Singgih Saptahadi, Universitas Diponegoro, Indonesia Dr. Naniek Utami Handayani, Universitas Diponegoro, Indonesia Dr. Manik Mahacandra, Universitas Diponegoro, Indonesia Dr. Yenni Ciawi, Udayana University, Indonesia Dr. Eng. Wahyu Kunto Wibowo, Universitas Pertamina, Indonesia Dr. Eng. Muhammad Abdillah, Universitas Pertamina, Indonesia Teuku Muhammad Roffi, Ph. D, Universitas Pertamina, Indonesia Dr. Eng Murman Dwi Prasetio, Telkom University, Indonesia Dr. Eng. R. Bagus Seno Wulung, Politeknik ATK Yogyakarta, Indonesia Dr. Eng. Mohamad Sofitra, Universitas Tanjungpura, Indonesia Dr. Harva Widiputra, Perbanas Institute, Indonesia Ary Syariar, PhD, Universitas Al Azhar Indonesia, Indonesia Dr. Dede Lia Zariatin, Universitas Pancasila, Indonesia Dr. Ainil Syafitri, Universitas Pancasila, Indonesia Dr. Herminarto Nugroho, Universitas Pertamina, Indonesia Dr. Muhammad Abdillah, Universitas Pertamina, Indonesia Dr. Lukas, Universitas Katolik Indonesia Atma Jaya, Indonesia Dr. Sumarsono Sudarto, Universitas Mercubuana, Indonesia Dr. Oktri Mohammand Firdaus, Universitas Garut, Indonesia Dr. Mohamad Sofitra, Universitas Tanjung Pura, Indonesia Dr. Rahmi Maulidya, Universitas Trisakti, Indonesia Dr. Victor Christianto, Institute Pertanian Malang, Indonesia Dr. Seno Darmawan Panjaitan, Universitas Tanjungpura, Indonesia Dr. Pujianto Yugopuspito, Universitas Pelita Harapan, Indonesia Rudi Irawan, Ph.D., Gunadarma University, Indonesia Dr. Kholis Audah, Swiss German University, Indonesia Dr. Charles Lim, Swiss German University, Indonesia Dr. Heru Purnomo Ipung, Swiss German University, Indonesia Dr. Yunita Umniyati, Swiss German University, Indonesia Dr. Eka Budiarto, Swiss German University, Indonesia Dr. Henry Nasution, Swiss German University, Indonesia Dr. Diah Widiputri, Swiss German University, Indonesia Dr. Maria Gunawan Puteri, Swiss German University, Indonesia Dr. Eng. Aditya T. Pratama, MT, Swiss German University, Indonesia Dr. Tanika D Sofianti, Swiss German University, Indonesia Muhammad Fathony, M.Sc., Ph.D., Swiss German University, Indonesia Dr. Hery Sutanto, S.Si, M.Si, Swiss German University, Indonesia Kho I Eng, Dipl.-Inf., Swiss German University, Indonesia Ir. Triarti Saraswati, M.Eng, Swiss German University, Indonesia Silvya Yusri, M.T., Swiss German University, Indonesia Aulia Iskandar, M.T., Swiss German University, Indonesia Ivan Kurniawan, M.T., MBA, Swiss German University, Indonesia

Anak Agung Ngurah Perwira Redi, Ph.D, Sampoerna University, Indonesia

Dr. Eng. (Cand). Firly Rachmaditya Baskoro, S.T., M.T, Hiroshima University, Japan Dr. Anton Ahmad, M.T., National Taiwan University of Science and Technology, Taiwan Dr. Panca Jodiawan, National Taiwan University of Science and Technology, Taiwan Hadi Susanto, M.T., MBA, National Taiwan University of Science and Technology, Taiwan Fuad Ughi, M.T., Chang Gung University, Taiwan Alva Erwin, M.Sc., cakravala.id, Indonesia

Organizing Committee

Deborah Nauli Simorangkir, Ph.D, Swiss German University, Indonesia Mina Arsita, Swiss German University, Indonesia Dyah Puspitasari, Swiss German University, Indonesia Tedi Purwanto, Swiss German University, Indonesia Danu Amirul Aji Supri, Swiss German University, Indonesia Tabligh Permana, S.Si., M.Si., Swiss German University, Indonesia David Simorangkir, S.E., Swiss German University, Indonesia Rizal Pauzan Ramdhani, Swiss German University, Indonesia Rina Rahayu, Swiss German University, Indonesia Anis Choirunnisa, S.T., M.Kom., Swiss German University, Indonesia Dian Karmila, Swiss German University, Indonesia Tety Rachmawati, Swiss German University, Indonesia Faisal Ifzaldi, Swiss German University, Indonesia Irzan Fahmi, Swiss German University, Indonesia Annisa Hanna Kusumawardani, Swiss German University, Indonesia Lestari Nur Wijayanti, Swiss German University, Indonesia Andalia Irma, Swiss German University, Indonesia Somanudin, M.M, Swiss German University, Indonesia

TABLE OF CONTENTS

Message from Rector		iii
Message from Conference Chair		iv
Keynote Speaker 1	Assoc. Prof. Dr. Waseem Haider	\mathbf{V}
Keynote Speaker 2	Dr. Nuki Agya Utama	vi
Invited Speech 1	Kholis Abdurachim Audah, Ph. D	vii
Invited Speech 2	Assoc. Prof. Dr. Intan Safinar Ismail	ix
Invited Speech 3	Prof. DrIng. Matthias Schirmer	xi
Invited Speech 4	Dr. Selvakumasr Ramachandran	xii
Invited Speech 5	Prof. DrIng. Dominik Aufderheide	xiii
Invited Speech 6	Prof. Dr. Ir. Wahyudi Sutopo	xiv
Conference Committee		xvi

ERGONOMIC AND HUMAN FACTORS

Article 1	Ground Control Station Design Optimization for Indonesian Operator Work Postures and Muscle Stimulation in Preparing the MALE Class UAV
	Apid Rustandi, Aris Surya Yunata, Sherly Octavia Saraswati, Muhammad Mahsyaril Anwar, Irfansyah Yudhi Tanasa, Frandi Adi Kaharjito and Jemie Muliadi
Article 2	Scaffolding Methodology Implementation for Training Program in an Engine Assembly Department of Indonesia Remanufacturing Company
	Firdan Dimas Pranadya, Tanika Dewi Sofianti and Jessica Florencia
Article 3	Assessment Risk Ergonomic in Painting Industry Using Ergo-FMEA Winnie Septiani, Ghaida Anggraeni and Novia Rahmawati

PRODUCTION AND OPERATION MANAGEMENT

Article 4	Training Material Decision Making for Mechanics Using Analytic Hierarchy Process (AHP): A Case Study PT United Tractors Tbk
	Anggi Febrianto, Aditya Tirta Pratama and Tanika Dewi Sofianti
Article 5	Analytic Hierarchy Process (AHP) Method for Choosing the Best Secondhand Injection Machine for PT PLA
	Sesarius Egi Budiman, Aditya Tirta Pratama and Setijo Awibowo
Article 6	Analytical Hierarchy Process (AHP) for Selection of Project Management Software to Support Remote Working: A Case Study at Logistics Division of a National EPC Company in Indonesia
	Eunike Anastasia Evangelista, Tanika D. Sofianti and Gembong Baskoro
Article 7	Decision Making for the Person In-Charge of Designing a New Ball Mill Machine Project Using Analytic Network Process (ANP) Case Study of Chukoh Seiki Co., Ltd., Japan
	Risqi Ahmad Abdullahman, Aditya Tirta Pratama and Setijo Awibowo

Article 8	Implementation of Single Minute Exchange of Dies at PT Ganding Toolsindo Indah Kurnia Mahasih Lianny, Sanurya Putri Purbaningrum and Edwin Sahrial Solih
Article 9	Application of Six Sigma in Quality Improvement of Deodorant Products at PT Cedefindo
	Elfira Febriani Harahap, Dorina Hetharia, Almira T. Fabianca and Arnes Faradilla
Article 10	Is Interface Quality and Information Quality on Online Review Matters?
	Vanesa Hana Budiarani and Sahid Susilo Nugroho
Article 11	Understanding the Trend of Scientific Productivity Analysis: Literature Review of Relevant Papers
	Ren Ren and Koichi Murata
Article 12	Customer Loyalty Model Development of Pool-To-Pool Shuttle Service
	Budhi Prihartono, Anies Sayyidatun Nisa and Hasrini Sari
Article 13	Circular Economy in Recycled Paper Company
	Irwan Eko Prabowo and Moses L. Singgih
Article 14	Submission Template for ACM Papers: Prioritize Business Process Improvement Plan Using House of Quality and Modified House of Risk: A Case Study of Higher Education Institution (HEI) from Indonesia
	Ig. Jaka Mulyana, Moses Laksono Singgih and Sri Gunani Partiwi
Article 15	A Combined Application of SERVQUAL and Fuzzy DEMATEL to Evaluate a University's Service Quality
	V. Reza Bayu Kurniawan, Oktavia Puput Dwi Sawitri, Trisna Yulianti, Dyah Ari Susanti and Fransiska Hernina Puspitasari
Article 16	Prior and Future Research on Quality-Driven Product Service Systems: A Literature Review
	Rahman Dwi Wahyudi, Moses Laksono Singgih and Mokh Suef
Article 17	Striving in Banking Industry in Indonesia Through Technology Information Investment Effectiveness
	Rexy Darmawan, Farah Margaretha Leon and Yosephina Endang Purba
Article 18	Service Quality Improvement at International Airport in Indonesia Using Service Quality and Theory of Inventive Problem Solving (TRIZ)
	Moses Laksono Singgih, Made Adhipartha Agung Asmara and Inaki Maulida Hakim
Article 19	Prediction of Sulfur Content in Electric Furnace Matte Using Machine Learning Winoto Gatot, Santosa Budi and Anityasari Maria

Article 20	Sustainable Manufacturing Performance Enhancement Using Lean Competitive Strategy: A Case Study in Plastic Molding Industry <i>Emelia Sari, Iveline Anne Marie, Farida Rani and Ridha Satria</i>
Article 21	Integrated Cost and Value Stream in Crankcase Production (CP) Imam Rendi Pratama and Moses Laksono Singgih
Article 22	Mapping of Digital Transformation Readiness, Benefits, and Barriers in Indonesian Steel Manufacturing
Article 23	M. Ibrahim Ats-Tsauri, Lien Herliani Kusumah and Humiras Hardi Purba Enhancing Sustainable Performance Using Lean Competitive Manufacturing Strategy: A Case Study at Motor Vehicle Battery Company

Iveline Anne Marie, Emelia Sari and Adriel Y. Hutagalung

CYBER SECURITY AND ARTIFICIAL INTELLIGENCE

Article 24	A Review on the Application of Machine Learning to Predict the Battery State that Enables a Smart, Low-Cost, Self-Sufficient Drying and Storage System for Agricultural Purposes
	Anak Agung Ngurah Perwira Redi, Ryo Geoffrey Widjaja, Iwan Agustono, Muhammad Asrol Arief S. Budiman and Fergyanto E. Gunawan
Article 25	Feasibility Evaluation Analysis of Mobile Tower Using Sensitivity Analysis and Monte Carlo Simulation
	Ershad Muhammad and Dadan Rahadian
Article 26	Readiness Status of Artificial Intelligence Applications on Electric Vehicles: A Mini Global Review and Analysis Using the J-TRA Method
	Andante H. Pandyaswargo, Meilinda F. N. Maghfiroh and Hiroshi Onoda
Article 27	Malicious Traffic Analysis Using Markov Chain
	Ryandy Djap, Charles Lim and Kalpin Erlangga Silaen
Article 28	Multivariate Sales Forecast Model Towards Trend Shifting During COVID-19 Pandemic: A Case Study in Global Beauty Industry
	Chandra Hartanto, Tanika Dewi Sofianti and Eka Budiarto
Article 29	Malware Classification Method Using API Call Categorization
	Andre Wijaya, Charles Lim and Yohanes Syailendra Kotualubun
Article 30	Deep Learning Analysis in Development of Handwritten and Plain Text Classification API
	Danny Gani, James Purnama, Kho I Eng, Maulahikmah Galinium and Maria Lamury

Article 31	Analysis of Tuberculosis Disease Spreading Pattern in Muara Enim District Using KNN Algorithm
	Hilwa Lelisa, Yaya S. Triana and Rahmat Budiarto
Article 32	Hand Detection and Hand Recognition Application Design for Human Computer Interaction Using SSD and Hand Landmark
	Julmawan Gunarto and Suharjito
Article 33	K-Means Clustering Approach to Determine Ore Type in Laterite Nickel Deposit
	Wanni Widodo and Erwin Widodo
Article 34	Design an Agile of Machine Learning to Predictive House Pricing and Targeting Segmented Market
	Johan Wijaya, Heru Purnomo Ipung and Mohammad A. Soetomo
Article 35	Color Palettes Overview After Thresholding Process with Default Methods of ImageJ or FIJI
	Erni Erfan and Nafrialdi Nafrialdi
Article 36	Performance Evaluation of Systematic Option Trading Strategies Using Entry and Exit Points Predicted by Machine Learning
	Tan Meilisa Tansil, Leonard P. Rusli and Eka Budiarto

SOFTWARE ENGINEERING

Article 37	Preliminary Study: Electronic Counting in Indonesian National Election Using Computer Answer Sheets and DMR Software
	Ferly Norman, Syarif Hadiwijaya and Fergyanto E. Gunawan
Article 38	mHealth Apps Interface Concept Design Using Meta-Principle
	Novia Rahmawati, Muhammad Alif Al Ayuba and Winnie Septiani
Article 39	PasporUMKM Online Platform Development for Self-Guided Halal Assurance System Preparation on the Case of SMEs in the Food Sector
	Juan Emmanuel Dharmadjaya, James Purnama and Tabligh Permana
Article 40	A Study on the Development of an Online Book Publishing Funding Platform: This Paper Analyzes Further into the Creation of an Online Platform to Fund Book Publishing Processes
	Raffael C. Fradio, Randy Anthony and James Purnama
Article 41	Analysis of the Application of Information and Communication Technology in Micro, Small and Medium Enterprises
	Mario Kawadito and Yanto Setiawan
Article 42	Visual Influence of Traditional Art Characteristics in Mobile Games: Topeng Malangan as Use Case
	Wahid Abeed Mulia, Jurike V. Moniaga and Novida Nur Miftakhul Arif

>

AUTOMATION, MECHATRONICS AND ROBOTICS

Article 43	Development of Internet of Things Cloud Shop Floor Machining Manufacturing System
	Angga Tegar Setiawan, Joko Sulistyo, Kadex Widhy Wirakusuma and Isa Setiasyah Toha
Article 44	IoT-Based Enterprise Architecture Model for Monitoring Safety of Drugs Supply to the Patient at Hospital
	Ivan, Heru Purnomo Ipung and Mohammad Amin Soetomo
Article 45	A Case Study of IIoT Application in Process Manufacturing: Management Information Systems in Palm Oil Refinery
	Suryo Toto Koncoro, Lukas and Marsul Siregar
Article 46	Preliminary ECG Cloud-Based Telecardiology System for Rural Areas
	Timotius Christopher Tantokusumo, Aulia Arif Iskandar and I Made Junior Rina Artha
Article 47	Evaluating Critical Success Factors for Implementation Internet of Things (IoT) Using DEMATEL: A Case of Indonesian Automotive Company
	Inaki Maulida Hakim, Moses Laksono Singgih and I Ketut Gunarta
Article 48	Controlling the Performance of Anti-Lock Braking System at Various Tracks and Vehicle Conditions
	Ghani Amri Rabbani, Ary Syahriar and Dwi Astharini

LOGISTICS AND SUPPLY CHAIN

Implementing Periodic Review – Variable Order Quantity System in Inventory Management: A Case Study in a Heavy Equipment Company, Kutai Barat
Anggi Febrianto, Tanika Dewi Sofianti and Gembong Baskoro
Sustainable Supply Chain Framework Design in Indonesian Palm Oil Industry with IoT Integration
Ivan Kurniawan
Komatsu's Spare-Parts Service Level and Day of Inventory Improvement for PT. MTN
Agung Bektiawan, Triarti Saraswati and Dide Salahuddin
Implementation of the Fuzzy Inference System to Determine the Amount of Purchase of Supplement Drug Products Based on Inventory and Sales Data at XYZ Pharmacy Fani Puspitasari, Sofia Debi Puspa and Christian Kenny Verel

Article 53	Sustainable Export Strategy of Used Cooking Oil SME in Indonesia
	Lim Sanny, Grace Junita Angelia Siwy, Vinna Suhendi, Ika Triana, Lea Simek and Beni Widarman B. Kelana
Article 54	B2C E-Commerce Buyer Trust Measurement in Indonesia
	Adre Edbert, James Purnama and Kho I Eng
Article 55	Inventory Level Reduction with VMI and Internet of Things Method
	Ivander, Karunia Agung Mahardini and Suryadiputra Liawatimena
Article 56	E-Commerce Platform Service Improvement of PT. X Based on Multiple Approach Integration
	Budhi Prihartono, Puti Annisa Rahman and Ilham Reza Prasetyo
Article 57	Optimization of Production Planning Using Goal Programming and Inventory Control Based on Demand Forecasting Using Neural Networks on CV Bahyu Perkasa
	Muhammad Hendra, Ratna Mira Yojana, and Iveline Anne Marie
Article 58	Analysis of Waste Transportation Volume in Jakarta Province Using Linear Regression and Random Forest Regression
	Eka Pramudianzah, Yaya Sudarya Triana and Rahmat Budiarto
Article 59	Influence of the Knowledge of Procurement Personnel on Implementation of Green Public Procurement: (Case Study: Banten, East Java, and Central Java Provinces)
	Hery Suliantoro and Dian Fitriani
Article 60	The Development of Procurement Role as a Strategic Function in Public Hospital
	Hery Suliantoro, Adhitya Caesarali and Naniek Utami H
Article 61	Supply Chain Model to Support the Sustainability of Biomass Based Power Plants: Indonesia Case
	Hermawan Thaheer, Sawarni Hasibuan and Choesnul Jaqin

SUSTAINABLE ENERGY AND ENVIRONMENT

Article 62	Application of Life Cycle Assessment to Determine Hotspots for Environmental Impacts of The Rayon Production Process: Indonesia Case
	Anggoro Daro Mukti, Sawarni Hasibuan and Katsuhiko Takahashi
Article 63	Green Consumerism in Indonesia
	Lim Sanny, Glory Aguzman, Melvin M. Ninal, Yen-Yen Natalia, Agung Hari Sasongko, and Yulieni
Article 64	Circular Economy in Plastic Pallet Manufacturer (PPM) Using Nano Level Material Circularity Indicator (MCI)
	Irsat Surya Sekti and Moses Laksono Singgih
Article 65	Analysis of Water in Oil Emulsions Effect from Used Engine Lubricant Oil Potential Material for EOR Heavy Crude Oil
	Mukhlis Noor Alfatih, Rini Setiati, Dwi Atty Mardiana, Muh. Taufiq Fathaddin and Pri Agung Rakhmanto
Article 66	The Effect of Adding Nickel Processing Tailings to Concrete Mixtures on a Laboratory Scale
	Pantjanita Novi Hartami, Rini Setiati, Danu Putra, Yuga Maulana, Edy Jamal Tuheteru, Taat Tri Purwiyono and Nadya
Article 67	Wind Speed Measurements and Comparisons in Cakung Jakarta
	Dena Hendriana, Umar Said, Mochamad Hamdan Aziz, Gembong Baskoro, Galih Akup Subekti and Henry Nasution
Article 68	The Effect of Supporting Facilities Growth Around the Urban Campus on Land-Use Change
	Dyah Lestari Widaningrum

Implementation of Single Minute Exchange of Dies at PT Ganding Toolsindo

Indah Kurnia Mahasih Lianny^{*} Automotive Engineering Technology, Politeknik STMI Jakarta, Jakarta Pusat, Jakarta, Indonesia indah-kml@stmi.ac.id Sanurya Putri Purbaningrum Automotive Engineering Technology, Politeknik STMI Jakarta, Jakarta Pusat, Jakarta, Indonesia sanuryaputri@stmi.ac.id Edwin Sahrial Solih Automotive Engineering Technology, Politeknik STMI Jakarta, Jakarta Pusat, Jakarta, Indonesia edwin.solih@stmi.ac.id

ABSTRACT

PT Ganding Toolsindo's problem is the replacement of the die which takes a long time, around 30 to 45 minutes per setup. The strategy that can be used to reduce setup time is to apply the Single Minute Exchange of Dies (SMED) method. This research aims to identify the cause of the high die replacement time on the SEYI SN2-300 Press Machine and take corrective steps to increase production effectiveness on the machine, as well as design jigs and fixtures that can make it easier for operators to replace the die. Results Based on data collection on setup dies activity on the SEYI SN2-300 Press Machine, all entered into the internal setup activity with a duration of 2144 seconds. Changes from an internal setup to an external setup have been made. Changing from internal setup to external setup can reduce downtime by 369 seconds. The design of the tools in the form of hanging rollers and roller die is expected to reduce the machine's internal setup time, where these tools can assist operators in moving old dies and installing new dies into the press machine. Based on the measurement of setup time after the implementation of the tools made, the results showed that there was a decrease in setup time of 331 seconds or 5.52 minutes..

CCS CONCEPTS

• General and reference → Document types; Reference works.

KEYWORDS

die replacement, single-minute exchange of dies, jig, and fixture design

ACM Reference Format:

Indah Kurnia Mahasih Lianny, Sanurya Putri Purbaningrum, and Edwin Sahrial Solih. 2022. Implementation of Single Minute Exchange of Dies at PT Ganding Toolsindo. In *Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry (ICONETSI)*, *September 21, 22, 2022, Alam Sutera, Tangerang, Indonesia.* ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3557738.3557830

ICONETSI, September 21, 22, 2022, Alam Sutera, Tangerang, Indonesia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9718-6/22/09...\$15.00

https://doi.org/10.1145/3557738.3557830

1 INTRODUCTION

The increasingly fierce level of competition in the industry requires companies to have competitive advantages, such as higher quality products and faster service. Companies that can satisfy their customers with faster and quality product delivery will have an advantage over their competitors. Faster service can be done by optimizing value value-added and minimizing non-value-added activities.

PT Ganding Toolsindo is an automotive component manufacturing company that was founded in 1998 by Ir. H. Wan Fauzi. The company develops in the manufacture of machine parts, stamping parts, assembly parts, molds, and dies, as well as fixtures and jigs. PT Ganding Toolsindo is faced with a competitive lead time challenge. The problem faced by the company is that there are still non-value-added activities such as death reimbursement which takes a long time around 30 to 45 minutes per setup. The process of replacing the die can reach 3 (three) times.

One approach that can be taken to reduce setup time is to apply the Single Minute Exchange of Dies (SMED) method. This concept was introduced by Shingo in 1960 which was a strategy to speed up die replacement setup [1]. The application of this method can reduce setup time in various industries. This study aims to identify the cause of the dead repair time on the SEYI SN2-300 Press Machine and take the following steps to increase production effectiveness on these machines, through the implementation of SMED, as well as the design of tools that can make it easier for operators to carry out the die replacement process

2 LITERATURE REVIEW

Lean is an effort that is made continuously to eliminate waste and increase the added value of products (goods or services) to provide value to customers (customer value) so that it is appropriate to achieve a perfect work flow to minimize waste and be flexible or change the process [2]

In the Lean approach there are five principles [3]:

1. Identify what provides value and what does not from the customer's point of view and not from the perspective of the organization, function, or department.

2. Identify the steps required to design, order, and produce along the value-added process for the wastage flow. 3. Make value-added activities flow without distractions, flipping, or waiting.

4. Make what the customer only asks for.

5. Striving for perfection continuously reduces wastage.

The latest research that focuses on the implementation of SMED, among others, is Mulyana and Hasibuan [4] proving that the application of the SMED method in the process of setup or changeover

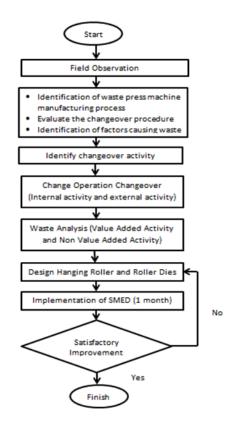
^{*}Place the footnote text for the author (if applicable) here.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

activities in the production of telecommunication panels has reduced the downtime of punching machines from 44.90 hours to 10.96 hours or a decrease in time of 75.59%. The SMED method is applied to the Palestinian Aluminum Profile Company to reduce the time of dies changing when manufacturing aluminum profiles. The results show that the implementation of SMED can result in savings ranging from 5%-15% in running costs while increasing production capacity [5].

Implementation of the Single Minute Exchange of Dies (SMED) and Maynard Operation Sequence Technique (MOST) Methods for Improvements has been carried out at PT. X Surabaya to improve the production process time. The SMED method is applied at the setup time of changing the production of one type of model to another. The result of applying the SMED method is a reduction in setup time from 3410 seconds to 2627 seconds or 43.5%. While the MOST (Maynard Operation Sequence Technology) method is used to measure based on the order of the sub-activity or movement. Improvements made include inventory area made with line 2 area so that it can take 780 TMU, laying material so that time can be eliminated by 1920 TMU, placing shrink package so that it can increase the time by 960 TMU [6].

Reducing dies replacement time on the 75-ton Nouguchi press machine was carried out at PT. Implement Prosperous Engineering. The method used is the SMED (Single Minutes Exchange of Die) method. Improvements were made to overcome the problem of handling dies from the storage area to the machine area which has a longer distance. The stages of improvement carried out are improving work procedures and designing trolley die tools. The reduction in time obtained after the repair process is 30% or 571 from the initial time of 1885 seconds to 1314 seconds. The reduction in time is expected to increase the effectiveness of production at PT. Laksana Teknik Makmur [7].


Another study on the use of the SMED method in the metalworking industry was conducted by Monteiro, et al. This research aims to reduce waste and increase productivity in the machining department. The steps taken are problems and processes using flow charts and VSM (Value Stream Mapping). The improvements made succeeded in reducing setup time by 40% on vertical milling machines and 57% on horizontal milling machines[8].

The SMED method can also be applied to the pharmaceutical industry to improve output quality and customer satisfaction. The results showed that the application of the SMED method can shorten machine downtime so that production capacity increases. Time reduction from the application of the SMED method by 30% within 12 months [9].

Another alternative to reduce setup time is to use a jig and fixture. The use of jigs & fixtures makes it easier to work on the manufacturing process to get higher product quality or higher production rates [10]. In designing jigs and fixtures, things need to be considered, including convenience, security and user comfort, and the process of making the materials used [11].

3 RESEARCH METHODOLOGY

The research method used is direct observation in the field. During the dies replacement process, recording is carried out so that the operator's time and activity data can be known from the recorded

Figure 1: Stages of the Research Process

video. The implementation of SMED starts from the identification of the internal setup activities and the external setup activities in the washer component production process 1. The stages of the research process can be seen in Figure 1.

4 FINDING AND DISCUSSION

4.1 Setup Time Calculation

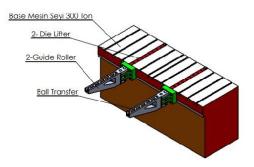
Field observations were carried out by observing the activity of replacing dies. Measurement of the time required for each machine setup activity by going through the video recording of the SEYI SN2-300 Press Machine setup activity. Based on the measurement results of the setup process, the total time required to setup dies on the SEYI SN2-300 Press Machine is 2144 seconds or 35.73 minutes.

4.2 Identification of Internal Setup and External Setup Activity

The internal setup activity is a dies replacement activity carried out by stopping the machine/process and checking the first product, while the external setup activity is a setup activity carried out without stopping the machine (initial preparation and completion). Identification of the activities of the internal setup and external setup can be seen in Table 1.

Based on field observations, all die setup processes carried out on press machines are carried out in a machine stopped condition so that 100% of setup activities are included in the downtime category,

No	Activity	Туре	Time (s)
1	Lowering upper dies	Internal	6
2	Removing the bolt	Internal	107
3	Raising the upper engine base	Internal	14
4	Cleaning the press machine area	Internal	132
5	Waiting for the forklift	Internal	42
6	Lifting dies	Internal	14
7	Block the dies	Internal	4
8	Moving the dies to the dies storage	Internal	61
9	Taking new dies for the stamping washer 1 process using	Internal	80
	a crane		
10	Lifting the dies to the press machine by using a forklift	Internal	94
11	Set the top base height	Internal	239
12	Fixing bolts for fastening the dies on the machine	Internal	654
13	Make sure the dies are set properly	Internal	27
14	Taking material for stamping washer components 1	Internal	161
15	Installing the material from the washer 1 component to	Internal	41
	the coil feeder machine		
16	Attaching the material to the coil feeder machine to the	Internal	74
	press		
17	Place the reservoir for the remaining pieces of	Internal	26
	production material (scrap)		
18	Putting the base and the power button	Internal	18
19	Conduct trial production and check the quality of washer components 1	Internal	350


Table 1: Identification of Internal Setup and External Setup Activity

where total downtime = total setup time is 35.73 minutes. In 1 day there are 3 (three) die setup activities, so the total dies setup time is 3 x 35.73 minutes = 107.19 minutes/day and the whole process is an internal setup which will be downtime for the company, which is 1, 79 hours/day. While the time required to produce 1 unit of washer 1 component, where the process takes 1 stroke is 2 seconds, then if the loss experienced by the company is 107.19 minutes/day or 6431.4 seconds/unit divided by processing time 1 washer is 2 seconds/unit, so the result is 3215.7 or about 3215 units which will be lost because that time is the time when the machine is stopped.

4.3 Change of Internal Setup Activity to External Setup Activity

Changing the internal setup activity to an external setup activity requires improvements to the system and the way the operator works. With these changes, it is hoped that some internal setup activities can be carried out while the machine is still operating or turned into an external setup. Changes in internal activity to external setup can be seen in Table 2.

In Table 2, it can be seen that there are changes in some of the internal setup activities to become external setups according to the observation of the die replacement activity on the SEYI SN2-300 Press Machine so that the downtime on the SEYI SN2-300 Press Machine is reduced by 369 seconds, so the current downtime is 1775 seconds with a downtime percentage of 82.79%.

Figure 2: Hanging Roller Design

4.4 Analysis of The Causes of High Internal Set-up Activity

Analysis of the factors causing high machine down time and internal setup activity time using the 5W+1H method as shown in Table 3.

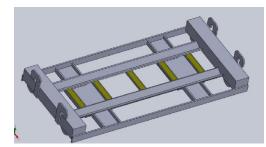
4.5 Reduce the time of internal activity setup

To assist the process of moving the old dies to the dies storage area and transferring the new dies to the press machine, work aids were designed in the form of hanging rollers and roller dies which can be seen in Figure 2.

Figure 2 is a design drawing of the hanging roller tool. This tool is made of iron with a roller in the middle.

No	Activity	Туре	Description
1	Lowering upper dies	Internal	
2	Removing the bolt	Internal	
3	Raising the upper engine base	Internal	
4	Cleaning the press machine area	Internal	
5	Waiting for the forklift	Internal	
6	Lifting dies	Internal	
7	Block the dies	Internal	
8	Moving the dies to the dies storage	Internal	Can be done by operator 2
9	Taking new dies for the stamping washer 1 process using a crane	Internal	Can be done by non-production operators
10	Lifting the dies to the press machine by using a forklift	Internal	
11	Set the top base height	Internal	
12	Fixing bolts for fastening the dies on the machine	Internal	
13	Make sure the dies are set properly	Internal	
14	Taking material for stamping washer components 1	Internal	Can be done by non-production operators
15	Installing the material from the washer 1 component to the coil feeder machine	Internal	Can be done by non-production operators
16	Attaching the material to the coil feeder machine to the press	Internal	
17	Place the reservoir for the remaining pieces of production material (scrap)	Internal	Can be done by operator 2, while operator 1 does production trial
18	Putting the base and the power button	Internal	
19	Conduct trial production and check the quality of washer components 1	Internal	

Table 2: Change of Internal Setup to External Setup


Table 3: Analysis of the factors that cause high machine downtime and internal setup time

No	What	Where	When	Why	Who	How
1	The length of the process of letting go bolt	Press Machine	The year 2021	Bolts are still used conventional	Operator	Replace it with a clamp bolt (no use thread)
2	There is a process of cleaning the press machine	Press Machine	The year 2021	The existence of work equipment and goods that are not needed	Operator	Workplace settings with 5S
3	area There is an activity waiting for a forklift The dies removal	Press Machine	The year 2021	Dies to be transferred using forklift The process of removing	Forklift Driver	Replacing forklifts with cranes
4	process takes quite a long time starting from lifting, propping, lifting the dies,	Press Machine	The year 2021	the dies is assisted by a forklift and shifting it to the center of the machine using a crowbar	Operator and F <i>orklift</i> Driver	Design and build work tools in the process of moving dies

Implementation of Single Minute Exchange of Dies at PT Ganding Toolsindo

Figure 3: Hanging Roller Fixing

Figure 4: Roller Dies Design

Figure 5: Roller Dies Fixing

Figure 3 is a picture of a hanging roller workpiece. This tool is used as a place to walk the wheels or function like train tracks. The existence of a roller will make it easier for the wheel when pushed.

Figure 4 is a design drawing of the roller dies tool. This tool is made of iron with wheels.

4.6 SMED Implementation

Based on the results of measuring the time of moving the dies with the tools of hanging rollers and roller dies, the time needed to move the dies can be seen in Table 4.

4.6.1 Measurement of Dies Displacement Time. Based on the results of measuring the time of moving the dies with the tools of hanging rollers and roller dies, the time needed to move the dies can be seen in Table 4

ICONETSI, September 21, 22, 2022, Alam Sutera, Tangerang, Indonesia

Table 4: Process Time for Old Dies Transfer

No	Activity	Туре	Time (s)
1	Setting chains and chain hangers	Internal	47
2	Lifting the dies pair and placing them on the dies roller	Internal	32
3	Putting the dies on the dies roller which is above the hanging roller	Internal	13
4	Unleash the chain	Internal	12
5	Pushing the dies into the press	Internal	17

Table 5: Process Time for Old Dies Transfer

No	Internal Activity	Туре	Time (s)
1	Setting chains and chain	Internal	47
	hangers		
2	Lifting the dies pair and	Internal	32
	placing them on the dies		
	roller		
3	Pulling the dies onto the	Internal	18
	hanging roller		
4	Setting chains and chain	Internal	47
	hangers		
5	Picking up a couple of	Internal	32
	dies		
6	Putting the dies on top of		15
	the storage		
7	Unleash the chain		12

The total time to transfer the dies to the press is 121 seconds. In the same way, the process of moving old dies can be done, which can be seen in Table 5.

Based on the calculation results, the total time for the setup dies on the SEYI SN2-300 Press Machine is 1945 seconds or 32.42 minutes or a difference of 2144 seconds – 1813 seconds to 331 seconds or 5.52 minutes.

5 CONCLUSION AND FURTHER RESEARCH

Based on the analysis of the results of this study, the following conclusions can be drawn:

- 1. Dies setup activity on the SEYI SN2-300 Press Machine based on observations, all enter into the internal setup activity where in this condition the machine is in a state of being unable to produce/stop, resulting in a down time of 2144 seconds.
- 2. Changes from internal setup to external setup have been made for activities to move the dies to the dies storage area, take new dies for the stamping washer 1 process using a crane, pick up material for stamping washer 1 component, install material from washer 1 component to the coil machine

feeder, and placing scrap storage tanks for the rest of the production material (scrap) where this activity can be carried out by non-production operators so as not to interfere with the work of production operators.

- 3. Changes from internal setup to external setup can reduce downtime by 369 seconds.
- 4. The factors causing the high machine setup time are due to the long process of removing the bolts, the process of cleaning the press machine area, the activity of waiting for the forklift, and the process of moving the dies takes a long time starting from lifting, blocking, lifting the dies.
- 5. The design of the tools in the form of hanging rollers and roller die is expected to reduce the machine's internal setup time, where these tools can assist operators in moving old dies and installing new dies into the press machine.
- 6. Based on the measurement of the setup time after the implementation of the tools made, the results showed that there was a decrease in setup time of 331 seconds or 5.52 minutes.

Suggestions that can be given in this research are:

- Based on the trial process carried out on the implementation of the use of hanging rollers and roller dies, several problems occur, namely the hanging roller swings while pushing the dies, and the roller dies have not moved smoothly from the hanging roller to the bolster, and the hook chain does not exist, for that stage, the next trial and improvement are still being done to strengthen the setup process with the help of these work tools.
- 2. From the last conclusion shows that the decrease in setup time is only 5.52 minutes, this happens that the longest internal setup activity is in removing the bolts on the old dies and tightening the bolts on the new dies. can reduce the processing time.
- 3. Suggestions for further research is to make a useful tool to speed up the process of installing bolts

ACKNOWLEDGMENTS

This research was supported and sponsored by P2M of Politeknik STMI Jakarta. This research also supported by PT Ganding Toolsindo.

REFERENCES

- [1] Shingo, S. (1985). A Revolution in Manufacturing The SMED System. CRC Pers.
- [2] Liker, J. K., & Morgan, J. M. (2006). The Toyota way in services: The case of lean product development. Academy of Management Perspectives, 20(2), 5–20. https://doi.org/10.5465/AMP.2006.20591002
- [3] Gaspersz, V. (2007). Lean Six Sigma for Manufacturing and Service Industri. Gramedia.
- [4] Mulyana, A., & Hasibuan, S. (2017). Implementasi Single Minute Exchange of Dies (Smed) Untuk Optimasi Waktu Changeover Model Pada Produksi Panel Telekomunikasi. Sinergi, 21(2), 107. https://doi.org/10.22441/sinergi.2017.2.005
- [5] Assaf, R. (2017). An Application of Single Minute Exchange of Die Approach in an Aluminum Profiles Extrusion Production System: Case Study. International Journal of Scientific Research and Innovative Technology, 4(7), 2313–3759. https: //www.researchgate.net/publication/319019018
- [6] Wibowo, W., Dwi, A., & Lukmandono. (2021). Implementasi Metode Single Minute Exchange of Dies (SMED) dan Maynard Operation Sequence Technique (MOST) untuk Perbaikan Waktu Proses Produksi (Studi Kasus Departemen Produksi-Wrapping di PT. X Surabaya). Senastitan, 1.
- Maldini, G., Yuselin, N., Gaya, J., Raya, M., Ii, S., Utara, J., Astra, P. M., & Masalah, P. (2019). Pengurangan Waktu Proses Penggantian Dies Di Mesin Press 75 Ton Nouguchi Untuk Meningkatkan Kapasitas Produksi Di PT. Laksana Tekhnik Makmur. Technologic, 10, 1–11.
 [8] Monteiro, C., Ferreira, L. P., Fernandes, N. O., Sá, J. C., Ribeiro, M. T., & Silva,
- [8] Monteiro, C., Ferreira, L. P., Fernandes, N. O., Sá, J. C., Ribeiro, M. T., & Silva, F. J. G. (2019). Improving the machining process of the metalworking industry using the lean tool SMED. Procedia Manufacturing, 41, 555–562. https://doi.org/ 10.1016/j.promfg.2019.09.043
- [9] Karam, A. A., Liviu, M., Cristina, V., & Radu, H. (2018). The contribution of lean manufacturing tools to changeover time decrease in the pharmaceutical industry. A SMED project. Procedia Manufacturing, 22, 886–892. https://doi.org/10.1016/j. promfg.2018.03.125
- [10] Arifin, F. (2018). Jig and Fixture. Kompasiana, (September), 1–13. https:// www.b-on.pt/Conference Name:ACM Woodstock conferenceConference Short Name:WOODSTOCK'18Conference Location:El Paso, Texas USAISBN:978-1-4503-0000-0/18/06
- [11] Fajar, A. N., Safera, I., Hustnusawab, M., & Sumpena, A. (2015). Rancang Bangun jig and fixture Sebagai Pemosisi Bor Tangan. Seminar Nasional Teknik Mesin, 175–180.